1. Hölder space

Given a set $A \subset \mathbb{R}^n$ and a function $u : A \to \mathbb{R}$, we say that

- (i) $u \in C(A)$ if *u* is continuous in *A*,
- (ii) $u \in D^k(A)$ if u is k-times differentiable in A,
- (iii) $u \in C^k(A)$ if u is k-times differentiable and its k-th order derivatives are continuous in A,
- (iv) $u \in C^{\infty}(A)$ if u is smooth (∞ -many times differentiable) in A,
- (v) $u \in C^{0,\alpha}(A)$ if u is α -Hölder continuous in A, (see Definition below)
- (vi) $u \in C^{k,\alpha}(A)$ if u is k-times differentiable and its k-th order derivatives are α -Holder continuous in A.

Definition 1. Given $\alpha \in (0, 1]$, we say *u* is α -Holder continuous in *A* is

$$[u]_{0,\alpha;A} \coloneqq \sup_{x \neq y, \, x, y \in A} \frac{|u(x) - u(y)|}{\|x - y\|^{\alpha}} < +\infty.$$
(1)

Given a multiindex $\gamma = (\gamma_1, \cdots, \gamma_k) \in \{1, \cdots, n\}^k$, we define

$$D^{\gamma}u = \partial_{\gamma_1} \cdots \partial_{\gamma_k} u : A \to \mathbb{R}.$$
 (2)

For $k \in \mathbb{N}$, we define

$$[u]_{k;A} = \sup_{|\gamma|=k} \sup_{A} |D^{\gamma}u|, \qquad (3)$$

and

$$\|u\|_{C^{k}(A)} = \sum_{m=0}^{k} [u]_{k;A},$$
(4)

where

$$[u]_{0;A} = \sup_{A} |u|.$$
(5)

Also, for $\alpha \in (0, 1]$ we define

$$||u||_{C^{\alpha}(A)} = [u]_{0,\alpha;A} + \sup_{A} |u|.$$
(6)

In addition, for $k \in \mathbb{N}$ and $\alpha \in (0, 1]$, we define

$$[u]_{k,\alpha;A} = \sup_{|\gamma|=k} [D^{\gamma}u]_{0,\alpha;A},\tag{7}$$

and

$$\|u\|_{C^{k,\alpha}(A)} = \|u\|_{C^{k}(A)} + [u]_{k,\alpha;A}.$$
(8)

Moreover, for $\alpha \in (0, 1)$ we often denote

$$[u]_{\alpha;A} = [u]_{0,\alpha;A},\tag{9}$$

and for $k \in \mathbb{N}$, we denote

$$[D^k u]_{\alpha;A} = \sup_{|\gamma|=k} [D^{\gamma} u]_{0,\alpha;A}.$$
(10)